BZOJ 2242 快速幂 拓欧 BSGS
题
题意:快速幂、逆元、离散对数三合一。
码(17216K, 612ms)
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
template<class T>
inline void read(T& x)
{
char c = getchar(); T p = 1, n = 0;
while(c < '0' || c > '9'){if(c == '-') p = -1; c = getchar();}
while(c >= '0' && c <= '9'){n = n * 10 + c - '0'; c = getchar();}
x = p * n;
}
template<class T, class U>
inline void read(T& x, U& y){read(x), read(y);}
template<class T, class U, class V>
inline void read(T& x, U& y, V& z){read(x), read(y), read(z);}
const int hashmod = 1 << 20;
class HashTable
{
private:
int hash[hashmod + 10], stack[1 << 20], stacktop;
long long value[hashmod + 10];
int locate(int x)
{
int h = x % hashmod;
while(hash[h] != -1 && hash[h] != x) h++, h %= hashmod;
return h;
}
public:
HashTable() : stacktop(0){memset(hash, -1, sizeof hash);}
void insert(int x, long long v)
{
int h = locate(x);
if(hash[h] == -1)
hash[h] = x, value[h] = v, stack[stacktop++] = h;
}
long long get(int x)
{
int h = locate(x);
return hash[h] != -1 ? value[h] : -1;
}
void clear(){while(stacktop)hash[stack[--stacktop]] = -1;}
} hash;
long long power(long long a, long long b, long long p)
{
long long ret = 1;
for(; b; b >>= 1, a *= a, a %= p)
if(b & 1)
ret *= a, ret %= p;
return ret;
}
void gcd(long long a, long long b, long long &d, long long &x, long long &y)
{
if(b == 0)
d = a, x = 1, y = 0;
else
gcd(b, a % b, d, y, x), y -= (a / b) * x;
}
template<class T>
T bsgs(T a, T b, T c)
{
if(!a && !b) return 1;
if(!a) return -1;
T sqrtC = ceil(sqrt(c));
T base = 1;
hash.clear();
for(int i = 0; i < sqrtC; i++, base *= a, base %= c)
hash.insert(base, i);
T inv = power(a, c - 1 - sqrtC, c);
for(T i = 0, invD = 1, j; i < sqrtC; i++, invD *= inv, invD %= c)
if((j = hash.get(b * invD % c)) != -1)
return i * sqrtC + j;
return -1;
}
int main()
{
int t, k; read(t, k);
while(t--)
{
long long y, z, p; read(y, z, p);
y %= p;
if(k == 1)
printf("%d\n", power(y, z, p));
else if(k == 2)
{
long long d, x, yy;
gcd(y, p, d, x, yy);
if(z % d)
puts("Orz, I cannot find x!");
else
{
y /= d, z /= d, p /= d;
gcd(y, p, d, x, yy);
printf("%lld\n", (x + p) % p * z % p);
}
}
else
{
long long x = bsgs(y, z, p);
if(x == -1)
puts("Orz, I cannot find x!");
else
printf("%lld\n", x);
}
}
return 0;
}
再来看一次神犇的求逆元