2017年8月

十月之水,张枣

一首我读了一遍后就摆脱不开其引力的诗。

十月之水

九五 :鸿渐于陵,妇三岁不孕终莫之胜。吉。——《易经·渐》

1

你不可能知道那有什么意义

对面的圆圈们只死于白天

你已穿上书页般的衣冠

步行在恭敬的瓶形尸首间

花不尽的铜币和月亮,嘴唇也

渐渐流走,冷的翠袖中止在途中

机密的微风从侧面撤退

一缕缕,唤醒霜中的眉睫

就这样珍珠们成群结队

沿十月之水,你和她行走于一根琴弦

你从那天起就开始揣测这个意义

十月之水边,初秋第一次听到落叶

2

我们所猎之物恰恰只是自己

鸟是空气的邻居,来自江南

一声枪响可能使我们中断蒙汛

可能断送春潮,河商的妻子

她的眺望可能也包含你

你的女儿们可能就是她抽泣的腰带

山丘也被包含在里面,白兔往往迷途

十年前你追逐它们,十年后你被追逐

因为月亮就是高高悬向南方的镜子

花朵随着所猎之物不分东西地逃逸

你翻掌丢失一个国家,落花也拂不去

一个安静的吻可能撒网捕捉一湖金鱼

其中也包括你,被抚爱的肉体不能逃逸

3

爻辞由干涸之前的水波表情显现

你也显现在窗口边,水鸟飞上了山

而我的后代仍未显现在你里面

水鸟走上了山洞,被我家长河止

我如此被封锁至再次的星占之后

大房子由稀疏的茅草遮顶

白天可以望到细小手指般的星星

黄狗往缝隙里张望 我早已不在里面

我如此旅程不敢落宿别人的旅店

板桥霜迹,我礼貌如一块玉坠

如此我承担从前某个人的叹息和微笑

如此我又倒映我的后代在你里面

4

你不知道那究竟有什么意义

开始了就不能重来,圆圈们一再扩散

有风景若鱼儿游弋,你可能是另一个你

当蝴蝶们逐一金属般爆炸、焚烧、死去

而所见之处仅仅遗留你的痕迹

此刻你发现北斗星早已显现

植物齐声歌唱,白昼缓缓完结

你在停步时再次闻到自己的香味

而她的热泪汹涌,动情地告诉我们

这就是她钟情的第十个月

落日镕金,十月之水逐渐隐进你的肢体

此刻,在对岸,一定有人梦见了你

cactus

Definition: each edge of the graph at most belongs to a single circle.

We can process tree easily, so consider how to convert a cactus into a tree.

[Circle-Square Tree]

Game Theory

Basic definition:
内固集 外固集 核
BZOJ 2275
#Fibonacci game.
Theorem The game with initial state of Fibonacci number will get failed.
Proof. By induction.
(i) Obv $ i = 2 $ get failed. Checked.
(ii) Assume $ i \le k $ valid. Let $ i = k + 1 $. Denote $ x $ as the first amount, $ y $ as the second.
We have $ x \ge \frac{1}{3} f_{k-1}, y \le \frac{2}{3} f_{k-1} \le \frac{1}{2} f_k $. The second one get the last stone, which means the first failed. QED.

Theorem(Zeckendorf) $\forall n \in \mathbb{N}_+ $, n can be represented by a discontiniousness sequence of Finobaccis.
Proof: By induction.
(i) $ n = 2, 3 $, obv.
(ii) Assume $n = 1..m-1$ valid. Consider the case of $ n = m $.
(a) $ m \in \mathcal{F} $, valid.
(b) $ m \not\in \mathcal{F} $, let $ F_{n_1} < m < F_{n_1+1} $, we have $ m' = m - F_{n_1} < F_{n_1-1} $, by assumption, follow the previous we can define such $ n_i $ s. Since $ n_2 < n_1-1 $, we get the conclusion. QED

By the 2 thms above, we know the previous player who take $ \min F_n $ at the very first time will win the game.

Code (8632 kb 4 ms)

#include <cstdio>
#include <cstring>
#include <algorithm>
#include <queue>
#include <set>
#include <stack>
using namespace std;
template<class T> void read(T& x)
{
    T p = 1, n = 0; char ch = getchar();
    while(ch < '0' || ch > '9') {if(ch == '-') p = -1; ch = getchar();}
    while(ch >= '0' && ch <= '9'){n = n * 10 + ch - '0'; ch = getchar();}
    x = p * n;
}
const int maxn = 1e6;
long long f[maxn];
int main()
{
    long long n; read(n);
    f[0] = 1, f[1] = 2;
    int cur;
    for(cur = 2; f[cur - 1] <= n; cur++) f[cur] = f[cur - 2] + f[cur - 1];
    cur--;
    while(n)
    {
        while(f[cur] > n) cur--;
        if(f[cur] == n)
        {
            printf("%lld\n", f[cur]);
            return 0;
        }
        n -= f[cur];
    }
    return 0;
}

HDU 2516

Code(1540K,0)

#include <cstdio>
#include <cstring>
#include <algorithm>
#include <queue>
#include <set>
#include <stack>
using namespace std;
template<class T> void read(T& x)
{
    T p = 1, n = 0; char ch = getchar();
    while(ch < '0' || ch > '9') {if(ch == '-') p = -1; ch = getchar();}
    while(ch >= '0' && ch <= '9'){n = n * 10 + ch - '0'; ch = getchar();}
    x = p * n;
}
const long long maxn = 1e6, maxm = 1LL << 31;
long long f[maxn];
set<long long> S;
int main()
{
    long long n;
    f[0] = 0, f[1] = 1; S.insert(0); S.insert(1);
    for(int cur = 2; f[cur - 1] <= maxm; cur++) 
        f[cur] = f[cur - 2] + f[cur - 1], S.insert(f[cur]);

    while(read(n), n)
        puts(S.count(n) ? "Second win" : "First win");
    return 0;
}

Wythoff Game

Theorem(Beatty) Let $ \frac{1}{\alpha} + \frac{1}{\beta} = 1, \alpha, \beta \text{~irrational}, a_n = \lfloor \alpha n \rfloor, b_n = \lfloor \beta n \rfloor $, then we have
(1) $ {a_n}, {b_n} $ is increasing;
(2) $ {a_n} + {b_n} = \mathbb{N_+} $.
Proof. (1) It's easy to find out $ \alpha,\beta > 1 $, which implies the increasing.
(2) Assume that $ a_p \le k, a_{p+1} > k, k \in \mathbb{N}_+ $. We have
$$
\begin{align}
\alpha p < k+1 \\
\alpha(p+1)>k+1
\end{align}
\Rightarrow p = \lfloor \frac{k+1}{\alpha} \rfloor \\
\Rightarrow S = \frac{k+1}{\alpha} + \frac{k+1}{\beta} \\
\Rightarrow k-1<S<k+1 \\
\Rightarrow S = k
$$
which means the previous k numbers get the first k numbers in natural number set.
Q.E.D.

By definition of the game, we can easily figure out that each odd situation (shown by a pair (a, b)) satisfies the following proposition: (Assume the first element of the pair is less than the second)
(i) We have $ (a_i, a_i + k) $ for the $ k $-th odd;
(ii) a_i is the minimum excluded integer from the previous pairs;
(iii) The first non-trial odd is $ (1,2) $.

By Beatty's Theorem, we let $ \beta - \alpha = 1 $, then we know the sequence $ a, b $ is what we find to describe the odds of the game. In general, each odd has a form as $ (\lfloor \frac{1+\sqrt{5}}{2} n \rfloor, \lfloor \frac{1+\sqrt{5}}{2} n + n \rfloor) $, where $ n $ is an integer meaning the order.

bst g22 jinniu lilai opebet orange88 vinbet xbet yuebo zunlong shijiebei bet007 hg0088 ju111 letiantang m88 mayaba qg777 qianyiguoji sbf777 tengbohui tlc ule weilianxier waiweitouzhu xingfayule xinhaotiandi yinheyule youfayule zhongying 2018shijiebei w88 18luck 188bet beplay manbet 12bet 95zz shenbo weide1946 ca88 88bifa aomenxinpujing betway bodog bt365 bwin tongbao vwin weinisiren 88jt fenghuangyule hongyunguoji 918botiantang huanyayule jianada28 jixiangfang libo long8 hongzuyishi zuqiutouzhu